
Solving diversified top-k weight clique search problem with MaxSAT

Junping Zhou1 , Chumin Li2 , Yupeng Zhou1 , Mingyang Li1 , Lili Liang1 and Jianan
Wang1?

1School of Information Science and Technology, Northeast Normal University, Changchun, China
2Université de Picardie Jules Verne, France

zhoujp877@nenu.edu.cn, chu-min.li@u-picardie.fr,
{zhouyp605,limy344,liangll597,wangjn}@nenu.edu.cn

Abstract
Solving NP-complete problems with SAT
solvers is an efficient approach for both aca-
demic and industrial problems. In this paper,
we present two encoding strategies for solv-
ing the diversified top-k weight clique search
(DTKWCS) problem and two specific practi-
cal applications of DTKWCS. Through several
experiments we show that our encoding strate-
gies are competitive, allowing to promote the
applications of the DTKWCS problem, such as
community detection, spectrum sharing, adver-
tising placement, etc.

1 Introduction
Diversified top-k weight clique search (DTKWCS) is
a problem that computes k cliques to maximize the
sum of weights of all vertices contained in the cliques.
This problem is NP-hard. It can be applied in spec-
trum sharing problem, advertising placement problem,
gene expression and motif discovery, influential commu-
nity search, sensor place problem, and anomaly detec-
tion in complex networks [Zheng et al., 2011; Conrad et
al., 2010; Krause and Guestrin, 2007; Bao et al., 2004;
Bao et al., 2016].
In solving DTKWCS in an unweighted graph, a triv-

ial direct approach based on cliques enumeration is used
[Feige, 1998]; however, the approach is time-consuming
and not suitable for solving large graphs. Another direct-
solving approach is proposed that can give approximate
solutions [Long et al., 2016]; however, the approach is not
competitive in solving dense graphs and cannot guaran-
tee the optimality of its solutions. Therefore, it is worth
exploring a generic approach to solving DTKWCS.

In this paper, we provide a generic approach for solv-
ing DTKWCS, which is done by encoding the DTKWCS
into the weighted partial MaxSAT (WPMS) problem and
then solving WPMS with state-of-the-art solvers. It has
been proven that solving NP problems, including aca-
demic and industrial problems, by encoding as a SAT
instance or a WPMS instance is an efficient strategy
[Chu et al., 2010; Schwind et al., 2016]. In this paper
to perform the encoding of DTKWCS to WPMS, we

present two encodings strategies: direct encoding (DE)
and independent set partition based encoding (ISPE).
The experimental results show that the two encoding
strategies are competitive.

2 Preliminaries
G=(V, E, w) is an undirected weighted graph, where V
and E are sets of vertices and edges respectively, and w
is a weight function that assigns a non-negative integer,
called weight (or cost), to each vertex v. A clique ci of a
graph G is a subset of vertices in G such that every two
distinct vertices in the subset are adjacent.

A literal is either a Boolean variable (variable for
brevity in the rest of paper) x or its negation ¬x. A
clause is a disjunction of literals, which is satisfied if and
only if at least one literal in it taking the value true.
A weighted clause is a pair (c, w), where c is a clause,
and w is the weight of the clause. A weighted clause is
hard if its weight is infinite; otherwise, the clause is soft.
A WPMS formula F in CNF is a conjunction of hard
and soft clauses. The purpose of the WPMS problem is
to find a truth assignment for F by satisfying all hard
clauses and then maximizing the sum of weights of all
satisfied soft clauses.

The diversified top-k weight clique search problem
is to compute k cliques to maximize the sum of
weights of all vertices contained in the cliques; that is,
Σv∈{c1∪c2∪···∪ck}w(v) is maximized by given a weighted
graph G and an integer k, where ci is one of the k cliques,
and w(v) is the weight of the vertex v in G.

3 Applications
This section presents two concrete practical applications
of the DTKWCS problem.

3.1 Spectrum sharing problem
We start with a wireless network application. With
the rapid development of wireless network technologies,
limited spectrum resources become the main bottleneck
restricting the performance of wireless networks. Re-
cently, spectrum utilization can be increased by exploit-
ing cognitive radio networks, which allows unlicensed

PUI

PUⅢ

PUⅡ

UU1

UU8

UU7

UU12

UU2

UU3

UU13

UU4

UU6

UU9

UU5

UU14

UU11

UU15

UU10

(a) An example of spectrum sharing problem

1 2 3 4

6 5

I Ⅱ

Ⅲ

1

1 1

1

1 1

9 9

9

(b) The transformed graph from (a)

Figure 1: The spectrum sharing problem and its transformed graph.

users to employ the spectrum resources occupied by pri-
mary users. Suppose that a cognitive radio network
contains R primary users, N unlicensed users, and k
spectrum channels. The primary users employ the fixed
channel allocation regulation, so that any two primary
users occupy different channels. Each primary user i has
a coverage of radium di. If the distance from a primary
user i to an unlicensed user j is less than di, the un-
licensed user j cannot use the channel occupied by the
nearby primary user i because the two users would in-
terfere with each other. Similarly, each unlicensed user
also has a coverage of radium. Two unlicensed users can-
not use the same channel when their interference areas
overlap.

The spectrum sharing problem is to allocate avail-
able channels to maximize network utilization. When
the maximum number of available channels is limited,
the problem is to perform spectrum assignment to unli-
censed users so that the maximum number of unlicensed
users can use channels simultaneously. This problem can
be solved by reducing it into the DTKWCS problem,
mapping users, including primary users and unlicensed
users, into vertices, adding an edge between two users
that can share a channel, and assigning weight 1 to each
unlicensed user, and weight R+N to each primary user.
Then the spectrum allocation problem is equivalent to
find k cliques to maximize system utilization.

Example 1. Figure 1(a) describes an example of spec-
trum sharing problem, where a cognitive radio network
contains 3 primary users (PUI-PUIII), 6 unlicensed users
(UU1-UU6), and 3 spectrum channels marked A, B, and
C. The primary user I, II, and III use channels A, B,
and C respectively. Their coverages are shown as dotted
circles around each primary user and the conflicted unli-
censed users are connected with dotted lines. Then, the
cognitive radio network can be abstracted into a graph
illustrated in Figure 1(b). The numbers labelled outside
each vertex are the weights of the corresponding ver-

tices. This spectrum allocation instance is equivalent to
the diversified top-3 weight clique search problem. We
can find 3 cliques {1, 2, I}, {5, 6, III}, {3, II}, which
maximizes the total weights of covered vertices. Thus,
the channel A is assigned to unlicensed users 1, 2; the
channel B is to 3, and the channel C is to 5, 6.

3.2 Advertising placement problem
Advertisement on TV is a common way for companies
to publicize their products. How to select programmes
from TV to advertise to catch maximum viewers is ex-
tremely important for these companies. Suppose that a
company plans to advertise in k parallel sessions simulta-
neously, where a session is a set of programmes that are
not mutually exclusive with respect of time scheduling.
The advertising placement problem is to find k sessions
to maximize the sum of viewers of the programmes in k
sessions. This problem can be also modeled as DTKWCS
problem, mapping programmes into vertices, adding an
edge between two programmes without time duration
overlap, and assigning the number of viewers as weight
to each programme. From the modeling process, we can
see the vertices in a clique constitute a session. Then
the advertising placement problem is equivalent to se-
lect k cliques to maximize the sum of viewers of the pro-
grammes in these k cliques.

Example 2. Figure 2(a) describes an example of ad-
vertising placement problem, where the programmes are
from programme1 to programme5, and the numbers of
viewers of the corresponding programmes are recorded in
the brackets. Then, the problem can be transformed into
a graph illustrated in Figure 2(b). The numbers labelled
outside of each vertex are the weights of the correspond-
ing vertices. When k = 2, the instance is equivalent to
the diversified top-2 weight clique search problem. We
can find 2 cliques {1, 3, 5} and {1, 2, 4, 5}, which can
maximize the sum of weights of covered vertices by the
2 cliques. Thus, the company can select these 2 sessions

{1, 3, 5} and {1, 2, 4, 5}, i.e., programmes {1, 2, 3, 4,
5} to publicize their products.

4 Encodings from DTKWCS to WPMS
In this section, we present two encodings from DTKWCS
to WPMS. The first one is a direct encoding, and the
second one is based on independent set partition.

4.1 Direct encoding
In this subsection, we propose a novel encoding, which
we call the direct encoding (DE), from DTKWCS to
WPMS. The basic idea of the DE is derived from the fol-
lowing observations. First, because the DTKWCS prob-
lem requires to find k cliques, we encode each vertex into
k variables; that is, the vertex vi is expanded into the
variables xi1, xi2, ..., xik. Thus, the variable xij = true
if and only if the vertex vi is in the jth clique. Second,
the DTKWCS and WPMS problems are both used to
compute a solution to maximize the sum of weights of
vertices (or soft clauses). Then, DE encoding creates
hard clauses that could guarantee every feasible solution
of a WPMS instance to form k cliques. Finally, the DE
encoding employs a direct way to encode soft clauses;
that is, each vertex vi defines a soft clause, which is sat-
isfied if and only if vi is in at least one of the k cliques.
Formally, given a graph G = (V,E,w) and an integer

k, we define the DE encoding as follows.
1. For each vi ∈ V , create k variables xi1, xi2, . . . , xik.
2. For any two unconnected vertices vi and vj in V

(i.e., (vi, vj) /∈ E), create k hard clauses: (¬xi1 ∨
¬xj1,∞), (¬xi2 ∨ ¬xj2,∞), . . ., (¬xik ∨ ¬xjk,∞).

3. For each vertex vi ∈ V , create a soft clause (xi1∨
xi2 ∨ · · · ∨ xik, w(vi)).

We denote the resulting WPMS formula by φ. The
DE encoding has the following properties.
• Any feasible solution of φ, that is, any truth as-
signment satisfying all hard clauses of φ, gives k
cliques. To see this, let us partition the variables
assigned with the value true into the k subsets:
{xi111, xi121, xi131, . . .}, {xi212, xi222, xi232, . . .}, . . .,
{xik1k, xik2k, xik3k, . . .}. Any two vertices corre-
sponding to two variables in a subset, saying vij1
and vij2 , must be adjacent; otherwise, a hard clause
¬xij1j∨¬xij2j was created because vij1 and vij2 were
not adjacent, which would be falsified.
• Any k cliques give a truth assignment satisfying all
hard clauses of φ: xij = true if and only if the vertex
vi is in the jth clique.
• Any optimal solution of φ gives k cliques covering
the vertices with the maximum sum of weights. To
see this, note that each soft clause corresponds to a
unique vertex, and it is satisfied if and only if the
corresponding vertex is covered. Thus, the maxi-
mum sum of weights of the satisfied soft clauses is
equal to the maximum sum of weights of the covered
vertices.

• DE ensures the cliques found by WPMS solvers are
as disjoint as possible. That is because the aim of
the WPMS problem is to detect a truth assignment
to maxmize the sum of weights of all satisfied soft
clauses and each satisfied soft clause reprsents a cov-
ered vertex.

Example 3. Figure 3 displays a graph G=(V, E, w),
where w(v1) = 3, w(v2) = 4, w(v3) = 2, w(v4) = 1. Let
k = 2. The WPMS instance encoding DTKWCS us-
ing DE consists of the hard clauses (¬x11 ∨ ¬x31,∞),
(¬x12∨¬x32,∞), (¬x21∨¬x41,∞), and (¬x22∨¬x42,∞),
because there are two pairs of non-adjacent vertices
< v1, v3 > and < v2, v4 >, and soft clauses (x11∨x12, 3),
(x21 ∨ x22, 4), (x31 ∨ x32, 2), and (x41 ∨ x42, 1). An
optimal assignment of the WPMS instance is {x11 =
false, x21 = true, x31 = true, x41 = false, x12 =
true, x22 = false, x32 = false, x42 = true}, which sat-
isfies all soft clauses. From this solution, we can con-
clude that the solution of the DTKWCS instance is
{{v2, v3}, {v1, v4}} covering all vertices of G.

4.2 Independent set partition based
encoding

After presenting a straight encoding, we introduce an-
other novel encoding, called Independent Set Partition
based Encoding (ISPE). The ISPE includes two conver-
sion processes: reducing a DTKWCS instance into a
new version of partial MaxSAT, named literal WPMS
(LWPMS), and subsequent transforming LWPMS into
WPMS. Before the introduction of the ISPE, some re-
lated definitions are given. LWPMS is a conjunction
of hard clauses and literal-weighted soft clauses. The
literal-weighted soft clause is composed of weighted lit-
erals denoted by (l, w), where l is a literal, and w is the
weight of the literal. Given a graph G, we note that an
independent set is a set of disconnected vertices.

Next, we present the first part of ISPE from DTKWCS
into LWPMS by given a graph G = (V,E,w) and an
integer k as follows.
1. For each vi ∈ V , create k variables xi1, xi2, . . . , xik.
2. For any two unconnected vertices vi and vj in V

(i.e., (vi, vj) /∈ E), create k hard clauses: (¬xi1 ∨
¬xj1,∞), (¬xi2 ∨ ¬xj2,∞), . . ., (¬xik ∨ ¬xjk,∞).

3. For each vi ∈ V , create
(

k
2
)
hard clauses. Specifi-

cally, for any two variables xir and xij(r 6= j, 1 6
r, j 6 k) generated by vi, create a hard clause
(¬xir ∨ ¬xij ,∞).

4. Partition the graph G into several disjoint indepen-
dent sets, and ensure that the vertices in the dis-
joint independent sets constitute V. Then for each
independent set {vi, vj , . . . , vr}, create k literal-
weighted soft clauses (xis, w(vi))∨(xjs, w(vj))∨ ...∨
(xrs, w(vr)) (s = 1, 2, . . . , k).

The following is the intuition behind the first part of
ISPE. The hard clauses generated by the disconnected
vertices guarantee that the vertices build up k cliques.

19:00-19:30 (430)
programme1

19:00-19:30 (430)
programme1

19:20-20:00 (340)

programme2

19:20-20:00 (340)

programme2

19:30-20:10 (480)

programme3

19:30-20:10 (480)

programme3

20:00-20:30 (520)

programme4

20:00-20:30 (520)

programme4

20:20-21:00 (210)

programme5

20:20-21:00 (210)

programme5

T

P

(a) An example of advertising placement problem

1 5

3

4 2

430

520

480

210

340

(b) The transformed graph from (a)

Figure 2: The advertising placement problem and its transformed graph.

2 3

1 43

4 2

1

Figure 3: A graph G with 4 vertices and 4 edges.

To ensure that the k cliques are not duplicated, we gen-
erate

(
k
2
)
hard clauses for each vertex. Furthermore,

literal-weighted soft clauses guarantee that the sum of
weights of covered vertices is maximum. We partition
the graph into independent sets in a predetermined or-
dering. Suppose that the current independent sets are
S1, S2, ..., Sr (in this order, r is 0 at the beginning of the
partition process), the current first vertex v is inserted
into the first Si such that v is non-adjacent to all ver-
tices already in Si. If such a Si does not exist, a new
independent set Si+1 is opened and v is inserted.
In view that no existing solvers can solve the LWPMS,

we manage to encode LWPMS into WPMS in the sec-
ond part. By comparing LWPMS and WPMS, we under-
stand that the difference between both is the type of soft
clauses: literal weighted and clause weighted. Therefore,
we need to transform the literal-weighted soft clauses
into clause-weighted soft clauses (i.e., soft clauses). The
method of the conversion is done by iteratively split-
ting the weighted literals. For each literal-weighted soft
clause, we generate a set of soft clauses, as shown in
Algorithm 1. After encoding all literal-weighted soft
clauses into soft clauses, the LWPMS is reduced into
WPMS. Similarly, xij = 1 if and only if the vertex vi

is in the jth clique. The optimal solution of the WPMS
instance corresponds to the maximum total weights of
the covered vertices.

Example 4. Let us also consider the graph G=(V,
E, w) demonstrated in Figure 3. Given k = 2, the
ISPE first reduces the DTKWCS instance into LWPMS,

Algorithm 1: To-Soft-Clause
Input: a literal-weighted soft clause

(xis, w(vi))∨(xjs, w(vj))∨ ...∨(xrs, w(vr))
Output: a set of soft clauses C

1 W ← {w(vi), w(vj), ..., w(vr)};
2 L← {xis, xjs, ..., xrs};
3 δ ← min W ;
4 while L 6= ∅ do
5 add a soft clause (c, δ) to C, where c is a

disjunction of all literals in L ;
6 delete the weights equivalent to δ from W and

the literals whose weight is equal to δ from L;
7 W is updated by each weight in W minus δ;
8 δ ← min W ;
9 return C ;

which consists of the hard clauses (¬x11 ∨ ¬x12,∞),
(¬x21 ∨ ¬x22,∞), (¬x31 ∨ ¬x32,∞), (¬x41 ∨ ¬x42,∞),
(¬x11 ∨ ¬x31,∞), (¬x12 ∨ ¬x32,∞), (¬x21 ∨ ¬x41,∞),
(¬x22 ∨ ¬x42,∞), and the literal-weighted soft clauses
(x11, 3)∨(x31, 2), (x21, 4)∨(x41, 1), (x12, 3)∨(x32, 2), and
(x22, 4) ∨ (x42, 1). Then the ISPE encodes the LWPMS
into WPMS, mainly encoding the literal-weighted soft
clauses into soft clauses based on Algorithm 1. The re-
duced soft clauses are (x11∨x31, 2), (x11, 1), (x21∨x41, 1),
(x21, 3), (x12∨x32, 2), (x12, 1), (x22∨x42, 1), and (x22, 3).
The hard clauses in the WPMS instance have no change.
Then the optimal assignment of the WPMS instance is
{x11 = false, x21 = true, x31 = true, x41 = false, x12 =
true, x22 = false, x32 = false, x42 = true}. From this
solution, we obtain that the solution of the DTKWCS
instance is {{v2, v3}, {v1, v4}} covering all vertices of G.

5 Evaluation
To test the DE and ISPE, we perform experiments using
the approximate DTKWCS solver EnumKOpt [Long et
al., 2016], the exact WPMS solver RC2-2018 [Ignatiev
et al., 2019], and the heuristic WPMS solver TT-Open-

Table 1: The comparison results on sparse graphs.

Instance k avg(s) EnumKOpt
TT-Open-wbo-inc RC-2018

DE ISPE DE ISPE
time(avg(s)) time(avg(s)) time(avg(s)) time time

V40

1 3.07 0(3.07) 0(3.07) 0(3.07) 0.0002 0.0001
2 6.67 0(6.67) 0(6.67) 0(6.67) 0.0664 0.0002
3 9.00 0(9.00) 0(9.00) 0(9.00) 1.7557 0.0005
4 11.60 0(11.60) 0(11.60) 0(11.60) 52.7998 0.0011
5 13.97 0(13.96) 0(13.97) 0(13.97) - 0.0028
6 16.10 0(16.10) 0(16.10) 0(16.10) - 0.0108

V50

1 3.07 0(3.07) 0(3.07) 0(3.07) 0.0004 0.0001
2 6.07 0(6.07) 0(6.07) 0(6.07) 0.2199 0.0004
3 9.03 0(9.03) 0(9.03) 0(9.03) 10.0517 0.0007
4 11.93 0(11.93) 0(11.93) 0(11.93) 230.2293 0.0012
5 14.70 0(14.70) 0(14.70) 0(14.70) - 0.0024
6 17.27 0(17.20) 0(17.20) 0(17.27) - 0.0062

V60

1 3.17 0(3.17) 0(3.17) 0(3.17) 0.0006 0.0003
2 6.17 0(6.17) 0(6.17) 0(6.17) 0.5761 0.0008
3 9.17 0(9.17) 0(9.17) 0(9.17) 58.8047 0.0013
4 12.17 0(12.17) 0(12.17) 0(12.17) - 0.0022
5 15.17 0(15.17) 0(15.17) 0(15.17) - 0.0029
6 18.17 0(18.17) 0(18.17) 0(18.10) - 0.0051

V70

1 3.37 0(3.37) 0(3.37) 0(3.37) 0.0007 0.0003
2 6.53 0(6.53) 0(6.53) 0(6.53) 1.1819 0.001
3 9.57 0(9.57) 0(9.57) 0(9.57) 167.7378 0.0019
4 12.57 0(12.57) 0(12.57) 0(12.57) - 0.003
5 15.57 0(15.57) 0(15.57) 0(15.57) - 0.0045
6 18.57 0(18.57) 0(18.57) 0(18.57) - 0.0065

V80

1 3.40 0(3.40) 0(3.40) 0(3.40) 0.0008 0.0005
2 6.47 0(6.47) 0(6.47) 0(6.47) 2.2178 0.0017
3 9.47 0(9.47) 0(9.47) 0(9.47) - 0.0031
4 12.47 0(12.47) 0(12.47) 0(12.47) - 0.0048
5 15.47 0(15.47) 0(15.47) 0(15.47) - 0.0171
6 18.47 0(18.47) 0(18.47) 0(18.47) - 0.0098

V90

1 3.70 0(3.70) 0(3.70) 0(3.70) 0.0011 0.0007
2 6.83 0(6.83) 0(6.83) 0(6.83) 3.6216 0.0025
3 9.87 0(9.87) 0(9.87) 0(9.87) - 0.0048
4 12.90 0(12.90) 0(12.87) 0(12.90) - 0.01
5 15.90 0(15.90) 0(15.87) 0(15.90) - 0.0106
6 18.90 0(18.90) 0(18.87) 0(18.90) - 0.0152

V100

1 3.93 0(3.93) 0(3.93) 0(3.93) 0.0016 0.001
2 7.37 0(7.37) 0(7.37) 0(7.37) 5.4904 0.0033
3 10.47 0(10.47) 0(10.47) 0(10.47) - 0.0068
4 13.50 0(13.47) 0(13.47) 0(13.50) - 0.0103
5 16.50 0(16.50) 0(16.47) 0(16.50) - 0.0138
6 19.50 0(19.50) 0(19.43) 0(19.50) - 0.0216

wbo-Inc [Fahiem et al., 2019]. These solvers are con-
sidered to be the best in their category. RC2-2018 and
TT-Open-wbo-Inc are executed on WPMS instances ob-
tained using the encoding presented in this paper, while
EnumKOpt is directly executed on graphs. The cut off
time of RC2-2018 and TT-Open-wbo-Inc is 1800 and 60
seconds, respectively. Since EnumKOpt is an approxi-
mation algorithm, it has no cut off time and is executed
until it ends itself. In addition, it returns a fault when
it fails to solve an instance. Furthermore, for each in-
stance we run TT-Open-wbo-Inc 10 times and record
the average value of the 10 runs as the final solution.
In the experimental results, the time is measured in sec-
onds. When the time is marked "0", it represents that
the instance can be solved in less than 0.0001 seconds.
If a solver fails to find a feasible solution in the cut off
time, we mark "-". In all experiments, k varies from 1
to 6. We implement the two encodings in the C++ pro-
gramming language. All experiments are performed on
a workstation under Linux ubuntu 18.04 with Intel(R)
Core i7-7700 3.60 GHz CPU and 32 GB RAM.

5.1 Comparion on sparse graphs
Table 1 shows the performance of the three solvers on
sparse graphs in which two vertices are adjacent with
probability 0.1. The number of vertices of these graphs
ranges from 40 to 100, the weight of all vertices is as-
signed 1 because EnumKOpt can only solve DTKWCS

Table 2: The comparison results on graphs with 60 vertices.

Instance k avg(s) EnumKOpt
TT-Open-wbo-inc RC-2018

DE ISPE DE ISPE
time(avg(s)) time(avg(s)) time(avg(s)) time time

P10

1 3 0(3.00) 0(3.00) 0(3.00) 0.0005 0.0003
2 6 0(6.00) 0(6.00) 0(6.00) 0.5917 0.0008
3 9 0(9.00) 0(9.00) 0(9.00) 83.4188 0.0016
4 12 0(12.00) 0(12.00) 0(12.00) - 0.0023
5 15 0(15.00) 0(15.00) 0(15.00) - 0.0033
6 18 0(18.00) 0(18.00) 0(18.00) - 0.0042

P20

1 4 0(4.00) 0(4.00) 0(4.00) 0.0006 0.0008
2 8 0(8.00) 0(8.00) 0(8.00) 1.9699 0.0021
3 12 0(12.00) 0(12.00) 0(12.00) - 0.0031
4 16 0(16.00) 0(16.00) 0(16.00) - 0.01
5 20 0(20.00) 0(20.00) 0(20.00) - 0.0142
6 23 0(23.00) 0(23.00) 0(23.00) - 0.1251

P30

1 5 0(5.00) 0(5.00) 0(5.00) 0.0012 0.0015
2 10 0(10.00) 0(10.00) 0(10.00) 4.0429 0.003
3 15 0(15.00) 0(15.00) 0(15.00) - 0.0152
4 20 0(20.00) 0(20.00) 0(20.00) - 0.0112
5 25 - 0(24.00) 0(25.00) - 0.013
6 29 - 0(28.00) 0(29.00) - 0.1004

P40

1 6 0(6.00) 0(6.00) 0(6.00) 0.0022 0.0033
2 12 0(11.30) 0(12.00) 0(12.00) 7.0075 0.0078
3 18 0(17.10) 0(18.00) 0(18.00) - 0.0545
4 24 - 0(23.00) 0(24.00) - 0.0289
5 29 - 0(28.00) 0(29.00) - 0.1885
6 34 - 0(33.00) 0(34.00) - 179.0345

P50

1 8 0(8.00) 0(8.00) 0(8.00) 0.0021 0.0025
2 16 0(15.07) 0(16.00) 0(16.00) 5.9974 0.007
3 22 - 0(22.00) 0(22.00) - 0.0979
4 28 - 0(28.00) 0(28.00) - 0.504
5 34 - 0(34.00) 0(33.00) - 164.7289
6 40 - 0(39.00) 0(39.00) - 34.284

P60

1 15 0(15.00) 0(15.00) 0(15.00) 0.0079 0.0063
2 30 - 0(30.00) 0(30.00) 3.9801 1.4185
3 42 - 0(42.00) 0(42.00) 230.6567 68.5837
4 52* - 0(52.00) 0(52.00) - -
5 59 - 0(59.00) 0(59.00) 6.4364 2.1628
6 60 - 0(60.00) 0(60.00) 0.0008 0.0885

P70

1 23 0(22.20) 0(23.00) 0(23.00) 0.0022 0.0013
2 41 - 0(41.00) 0(41.00) 0.881 1.3745
3 55 - 0(55.00) 0(55.00) 0.5056 0.6349
4 60 - 0(60.00) 0(60.00) 0.001 0.0117
5 60 - 0(60.00) 0(60.00) 0.0013 0.0213
6 60 - 0(60.00) 0(60.00) 0.0011 0.0932

on unweighted graphs. For each scale of graphs, we
generate 50 instances. In the table, V i represents the
graphs containing i vertices, avg(s) records the mean
sum of weights of covered vertices in a set of 50 instances
found by the exact solver RC2-2018, and time(avg(s))
records the average time and average size of these in-
stances found by the corresponding solvers. As can be
seen from the table, EnumKOpt can efficiently obtain
the optimal solution except V40 (k = 5), V50 (k = 6),
and V100 (k = 4). The instances encoded by DE can
be derived nearly optimal solution by TT-Open-wbo-Inc
and fast solved by RC2-2018 when k is small. The in-
stances encoded by ISPE can be obtained good-quality
solutions by TT-Open-wbo-Inc, the quality of which is
higher than EnumKOpt. Furthermore, RC2-2018 solves
these instances always in a very short time. Thus, the
experiment indicates that when solving DTKWCS on
sparse graphs, ISPE is effective and efficient.

5.2 Comparion on graphs with different
densities

We compare the three solvers by varying the probabil-
ity with which two vertices are adjacent in a graph in
Table 2. In the experiment, the number of vertices in
all graphs is 60, the weight of all vertices is 1, and the
probability is varied from 0.1 to 0.7. We also generate 50
instances for graphs with each probability. We see that
the larger the probability is, the denser the graphs. As
in Table 2, Pi represents that the probability that any

Table 3: The comparison results on graphs from BHOSLIB.

Instance k size EnumKOpt
TT-Open-wbo-inc RC-2018
DE ISPE DE ISPE

time(size) time(size) time(size) time time
frb30-15-1 1 30 - 0(30) 0.01(28) 0.3157 -
(450, 83198) 2 54.00* - 0.01(54) 0.01(53) - -

3 78.00* - 0.01(75) 0.01(78) - -
4 99.00* - 0.02(92) 0.02(99) - -
5 121.00* - 0.01(113) 0.02(121) - -
6 143.00* - 0.01(130) 0.01(143) - -

frb30-15-2 1 30 - 0(30) 0(30) 3.7318 3.0665
(450, 83151) 2 59 - 0.01(53) 0.01(55) - 95.211

3 78.00* - 0.01(74) 0(78) - -
4 101.00* - 0.01(91) 0.01(101) - -
5 123.00* - 0.01(111) 0.01(123) - -
6 150.00* - 0.02(131) 0.01(150) - -

frb30-15-3 1 30 - 0(30) 0(30) 0.1344 3.4444
(450, 83216) 2 59 - 0.01(54) 0(55) - 16.8359

3 79.00* - 0.01(74) 0.01(79) - -
4 101.00* - 0.02(91) 0.01(101) - -
5 125.00* - 0.01(112) 0.01(125) - -
6 148.00* - 0.01(131) 0.01(148) - -

frb30-15-4 1 30 - 0(30) 0(30) 0.0392 276.7267
(450, 83194) 2 59 - 0.01(54) 0(55) - 117.4003

3 79.00* - 0.01(73) 0.01(79) - -
4 101.00* - 0.01(93) 0.01(101) - -
5 125.00* - 0.01(111) 0.01(125) - -
6 145.00* - 0.01(131) 0.01(145) - -

frb30-15-5 1 30 - 0(30) 0(30) 0.0793 6.9701
(450, 83231) 2 59 - 0.01(54) 0(56) - 22.4641

3 79.00* - 0.02(75) 0.01(79) - -
4 102.00* - 0.02(92) 0.01(102) - -
5 127.00* - 0.01(111) 0.01(127) - -
6 149.00* - 0.01(134) 0.01(149) - -

frb40-19-1 1 40 - 0.01(40) 0.01(40) 0.638 8.0238
(760, 247106) 2 72.00* - 0.01(72) 0.01(72) - -

3 111.00* - 0.01(96) 0.03(111) - -
4 140.00* - 0.02(119) 0.04(140) - -
5 170.00* - 0.03(143) 0.03(170) - -
6 202.00* - 0.04(172) 0.04(202) - -

frb40-19-2 1 40.00* - 0.01(40) 0(39) 126.3444 -
(760, 247157) 2 73.00* - 0.01(72) 0(73) - -

3 105.00* - 0.02(95) 0.01(105) - -
4 137.00* - 0.03(118) 0.02(137) - -
5 166.00* - 0.04(145) 0.03(166) - -
6 197.00* - 0.03(172) 0.03(197) - -

frb40-19-3 1 40 - 0.01(38) 0(37) 6.5005 -
(760, 247325) 2 70.00* - 0.02(70) 0.01(70) - -

3 101.00* - 0.02(95) 0.01(101) - -
4 131.00* - 0.04(116) 0.02(131) - -
5 162.00* - 0.03(143) 0.03(162) - -
6 192.00* - 0.03(168) 0.02(192) - -

frb40-19-4 1 39 - 0.01(39) 0.01(37) - -
(760, 246825) 2 71.00* - 0.01(71) 0.01(68) - -

3 101.00* - 0.01(96) 0.02(101) - -
4 127.00* - 0.03(118) 0.02(127) - -
5 155.00* - 0.03(144) 0.03(155) - -
6 184.00* - 0.03(169) 0.02(184) - -

frb40-19-5 1 40 - 0(39) 0(38) 140.2172 -
(760, 246801) 2 71.00* - 0.01(70) 0.01(71) - -

3 101.00* - 0.02(98) 0.01(101) - -
4 133.00* - 0.04(119) 0.01(133) - -
5 164.00* - 0.03(144) 0.02(164) - -
6 194.00* - 0.03(170) 0.02(194) - -

two vertices have an edge is i. The avg(s) also records
the mean sum of weights of covered vertices in a set of 50
instances, where the number with ∗ is the best solution
found by TT-Open-Wbo-Inc, the others are found by
RC2-2018. time(avg(s)) records the average time and
average size of these instances found by the correspond-
ing solvers. Among the results in Table 2, we observe
the performance of EnumKOpt becomes worse when the
probability is increased, whereas the performance of the
other two solvers are stable. This indicates that our en-
codings are effective on dense graphs and it is better for
DTKWCS to be solved by converting to WPMS using
DE and ISPE when handling dense graphs.

5.3 Comparion on BHOSLIB graphs
The results showed in Table 3 summarize the compari-
son of the three solvers on a subset of BHOSLIB graphs

Table 4: The results on advertising placement instances.

Instance k size
TT-Open-wbo-inc RC-2018
DE ISPE DE ISPE

time(size) time(size) time time

P10

1 1628 0(1628) 0(1628) 0.0001 0.0001
2 1628 0(1628) 0(1628) 0.0001 0.0002
3 1628 0(1628) 0(1628) 0.00 0.0002
4 1628 0(1628) 0(1628) 0.0001 0.0003
5 1628 0(1628) 0(1628) 0.0001 0.0004
6 1628 0(1628) 0(1628) 0.0001 0.0007

P20

1 2341 0(2341) 0(2341) 0.0002 0.0002
2 2617 0(2617) 0(2617) 0.0008 0.0004
3 2845 0(2845) 0(2845) 0.0007 0.0006
4 2970 0(2970) 0(2970) 0.0026 0.0009
5 3051 0(3051) 0(3051) 0.0054 0.0015
6 3122 0(3122) 0(3122) 0.0051 0.0017

P30

1 2572 0(2572) 0(2572) 0.0005 0.0003
2 3109 0(3109) 0(3109) 0.0035 0.001
3 3556 0(3556) 0(3556) 0.0102 0.0017
4 3783 0(3783) 0(3783) 0.1363 0.01
5 3983 0(3983) 0(3983) 2.2837 16.0011
6 4132 0(4132) 0(4132) 15.2011 -

P40

1 3674 0(3674) 0(3674) 0.0004 0.0005
2 4508 0(4508) 0(4508) 0.0071 0.0017
3 5045 0(5045) 0(5045) 0.0186 0.0032
4 5272 0(5272) 0(5272) 0.1675 0.14
5 5472 0(5472) 0(5472) 1.0632 -
6 5621 0(5621) 0(5621) 19.1466 -

P50

1 4133 0(4133) 0(4133) 0.001 0.0006
2 5828 0(5828) 0(5828) 0.0053 0.0015
3 6422 0(6422) 0(6422) 0.0211 0.039
4 6814 0(6814) 0(6814) 0.1362 26.0454
5 7128 0(7128) 0(7128) 0.6038 -
6 7328 0(7328) 0(7328) 16.2458 -

P60

1 4575 0(4575) 0(4575) 0.0021 0.0008
2 6562 0(6562) 0(6562) 0.0141 0.0057
3 7656 0(7656) 0(7656) 0.0246 0.422
4 8319 0(8319) 0(8319) 0.3307 -
5 8766 0(8766) 0(8766) 2.6617 -
6 9111 0(9111) 0(9111) 37.5346 -

P70

1 5525 0(5525) 0(5525) 0.0026 0.0006
2 8085 0(8085) 0(8085) 0.0139 0.0056
3 9223 0(9223) 0(9223) 0.0439 0.0804
4 9886 0(9886) 0(9886) 0.4195 -
5 10333 0(10333) 0(10333) 4.0618 -
6 10678 0(10678) 0(10678) 25.2137 -

P87

1 5926 0(5926) 0(5926) 0.0039 0.001
2 9519 0(9519) 0(9519) 0.0268 0.0102
3 11040 0(11040) 0(11040) 0.0506 0.3139
4 11990 0(11990) 0(11990) 1.244 -
5 12570 0(12570) 0(12570) 13.8274 -
6 12961 0(12961) 0(12961) 76.0653 -

[max, 2020]. In the experiment, the weight of all ver-
tices is assigned 1. In Table 3, the numbers below the
name of each instance are (|V |, |E|), where |V | and |E|
represent the number of vertices and edges respectively.
The size records the sum of weights of covered vertices
of each graph, where the number with ∗ is the best solu-
tion found by TT-Open-Wbo-Inc, the others are found
by RC2-2018. From the table, we see that EnumKOpt
fails for these graphs; RC2-2018 can obtain the optimal
solution for a few instances, whereas TT-Open-wbo-Inc
can always give a feasible solution. Moreover, the graphs
encoded by ISPE always be produced a better quality so-
lution than the graphs encoded by DE, which both use
the same solver TT-Open-Wbo-Inc. It indicates that
ISPE is efficient for solving hard graphs for the graphs
in BHOSLIB, which are famous for its hardness.

5.4 Comparion on advertising placement
problem

We conduct an experiment on the advertising place-
ment problem. Since EnumKOpt is designed for un-
weighted DTKWCS, we compare the two WPMS solvers
TT-Open-wbo-Inc and RC2-2018 on a set of real size
TV programmes provided by SAPPRFT. All instances
are available on the website 1. The number of vertices
of these instances ranges from 10 to 87. In Table 4,
the size × 10000 is the sum of viewers of selected pro-
grammes. From the results shown in Table 4, we see that
almost all instances encoded by DE and ISPE can be
obtained the optimal solutions solved by TT-Open-wbo-
Inc. Moreover, the instances encoded by DE have a bet-
ter performance than ISPE solved by RC2-2018, which
indicates that the DE encoding is effective for solving
the advertisement putting problem.

6 Conclusion
This paper defines two encoding strategies for solving
the DTKWCS problem into the WPMS problem. It can
be noted that DE encoding is a direct way, whereas ISPE
is based on independent set partition. The experimental
results show that our encoding strategies are efficient and
effective, which also remedy the lack of dedicated exact
solvers for the DTKWCS problem.

References
[Bao et al., 2004] Y. Bao, S. Wang, and et al. Yan, B.

Emergent clique formation in terrorist recruitment. In
Proc the AAAI-04 Workshop on Agent Organizations:
Theory and Practice, 2004.

[Bao et al., 2016] Y. Bao, S. Wang, and et al. Yan, B.
Research on maximal weighted independent set-based
graph coloring spectrum allocation algorithm in cogni-
tive radio networks. In Proc the International Confer-
ence on Communications, Signal Processing and Sys-
tems, 2016.

[Chu et al., 2010] Min Li Chu, Felip Manyà, Quan Zhe,
and Zhu Zhu. Exact minsat solving. In International
Conference on Theory & Applications of Satisfiability
Testing, pages 363–368, 2010.

[Conrad et al., 2010] L. Conrad, M. Aaron, R. Fergal,
and Neil H. Detecting highly overlapping community
structure by greedy clique expansion. In Proc the 4th
SNA–KDD Workshop on Social Network Mining and
Analysis, pages 112–119, 2010.

[Fahiem et al., 2019] B. Fahiem, J. Matti, and
M. Ruben. Maxsat evaluation 2019 : Solver
and benchmark descriptions. 2019.

[Feige, 1998] Uriel Feige. A threshold of ln n for ap-
proximating set cover. JOURNAL OF THE ACM,
45:314–318, 1998.
1http://ai.nenu.edu.cn/yinmh/index.html

[Ignatiev et al., 2019] Alexey Ignatiev, Antonio Mor-
gado, and Joao Marquessilva. Rc2: an efficient maxsat
solver. Journal on Satisfiability, Boolean Modeling and
Computation, 11(1):53–64, 2019.

[Krause and Guestrin, 2007] Andreas Krause and Car-
los Guestrin. Near-optimal observation selection using
submodular functions. In Proc AAAI Conference on
Artificial Intelligence, pages 22–26, 2007.

[Long et al., 2016] Long, Yuan, Lu, Qin, Xuemin, Lin,
Lijun, Chang, Wenjie, and Zhang. Diversified top-k
clique search. Vldb Journal, 25:171–196, 2016.

[max, 2020] Maxsat evaluation 2020. https:
//networkrepository.com/bhoslib.php, 2020.

[Schwind et al., 2016] Nicolas Schwind, Tenda Okimoto,
Maxime Clement, and Katsumi Inoue. Representative
solutions for multi-objective constraint optimization
problems. In International Conference on Principles
of Knowledge Representation & Reasoning, pages 601–
604, 2016.

[Zheng et al., 2011] Xiaoqi Zheng, Taigang Liu, Zhong-
nan Yang, and Jun Wang. Large cliques in arabidopsis
gene coexpression network and motif discovery. Jour-
nal of Plant Physiology, 168(6):611–618, 2011.

https://networkrepository.com/bhoslib.php
https://networkrepository.com/bhoslib.php

	Introduction
	Preliminaries
	Applications
	Spectrum sharing problem
	Advertising placement problem

	Encodings from DTKWCS to WPMS
	Direct encoding
	Independent set partition based encoding

	Evaluation
	Comparion on sparse graphs
	Comparion on graphs with different densities
	Comparion on BHOSLIB graphs
	Comparion on advertising placement problem

	Conclusion

